
1. Introduction
The health effects and climatic impacts of air pollution have been highlighted by several studies (Landrigan 
et  al.,  2017; Mukherjee & Agrawal,  2017; Myhre et  al.,  2013). Many studies focus on the size, distribution, 
and composition of particulate matter (PM) among the various air pollutants. Understanding the chemical 
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Plain Language Summary We compare four different modeling approaches for simulating 
secondary organic aerosol (SOA) formation, accounting for a significant fraction of total fine particulate matter 
concentrations in Seoul, Korea. Using GEOS-Chem, a chemical transport model, we find that current SOA 
schemes show large variabilities. Including an additional precursor species and further oxidation (i.e., chemical 
aging) of simulated SOA improves model performance. We also find that a simplified scheme with less 
computational cost can reproduce observed values but generally shows an overestimation in Seoul, indicating 
uncertainties in parameterization.
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composition of PM is essential in assessing potential impacts on the atmospheric environment and, therefore, 
establishing effective regulatory policies.

Observational studies show that organic aerosols (OA) represent a significant fraction (20%–90%) of total sub-
micron (diameter ≤1 μm) particulate matter (PM1) concentrations globally (de Gouw & Jimenez, 2009; Zhang 
et al., 2007; Zhou et al., 2020). A significant amount of OA mass concentration has also been reported in East 
Asia. For example, in Seoul, a densely populated megacity with a population of ∼10 million, OA comprises 
roughly 40% of total non-refractory PM1 mass concentrations during late spring (Crawford et al., 2021; Jordan 
et al., 2020; NIER & NASA, 2017).

Organic species are often directly emitted in the particle phase from anthropogenic and natural combustion sourc-
es, known as primary organic aerosols (POA; DeCarlo et al., 2010; Jimenez et al., 2009; Zhang et al., 2007). 
On the other hand, secondary organic aerosols (SOA) can be formed through heterogeneous and aqueous reac-
tions, and also from the oxidation of precursor gases, called parent hydrocarbons or volatile organic compounds 
(VOCs), and through the gas-particle partitioning process of oxygenated organic compounds (de Gouw & Jimen-
ez, 2009; Hallquist et al., 2009). Compared to inorganic species that comprise PM, such as sulfate (SO4

2−), nitrate 
(NO3

−), and ammonium (NH4
+) aerosols, scientific understanding of the atmospheric formation and removal 

processes of OA, especially the atmospheric processing of SOA in urban environments, is still highly uncertain 
(Hayes et al., 2015). Not only are direct emissions of POA difficult to estimate, but the sources, fates, character-
ization of precursor species, and the volatility distribution of SOA remain a considerable uncertainty (Hallquist 
et al., 2009).

Chemical transport models (CTMs) are an effective tool to test the accuracy of emission sources and to investigate 
the formation and removal processes of OA. Early studies implied that POA, once emitted, remains non-volatile. 
Thus, models treated POA as a chemically inert species that is only transported or deposited (Bond et al., 2004). 
However, subsequent studies discovered that POA could act as a semivolatile species, which undergo reversible 
partitioning, and therefore this process was taken into account in models (Pai et al., 2020; Robinson et al., 2007).

Modeling SOA in CTMs requires both accuracy and simplicity so that the schemes reproduce essential character-
istics of the complex processes that lie behind SOA formation. At the same time, they need to be computationally 
efficient. One of the most traditional SOA modeling schemes is the “two-product approach,” which uses two SOA 
surrogates that partition at equilibrium based on SOA yields from chamber experiments (Odum et al., 1996). Lat-
er, a new approach was introduced to represent continuous oxidation of semivolatile compounds, also known as 
chemical aging, with the volatility distribution of OA. Donahue et al. (2006) and Stanier et al. (2008) developed 
the “volatility basis set (VBS) approach,” which divides the wide volatility range into several bins that categorize 
organic compounds by their volatilities. When subject to aging, their volatilities would change.

Several studies have implemented the VBS approach, accounting for continuous aging within the bins in regional 
and global models to simulate SOA (Hodzic et al., 2010; Pye & Seinfeld, 2010; Shrivastava et al., 2008). Although 
recent studies show enhancement in simulated SOA mass, showing improved results compared to the significant 
model-observation discrepancies that have been reported previously (Tsigaridis et al., 2014), study regions and 
model resolutions have been limited to a global scale (Hodzic et al., 2016; Jo et al., 2013; Pai et al., 2020). In this 
study, we examine the characteristics of OA formation in an urban environment, on a finer scale, using airborne 
and ground observation data along with a global 3-D CTM, GEOS-Chem. Here we compare four SOA schemes, 
including a simplified approach and three different treatments using the VBS method, and evaluate model perfor-
mance in Seoul during different seasons in 2016 through 2018. The main objective of this study is to suggest the 
most suitable approach in representing the observed atmospheric conditions for OA in Seoul.

2. Model Description
We use a 3-D global CTM, GEOS-Chem v12.0.0 (Bey et al., 2001), to simulate OA in East Asia during two 
different periods, spring-summer 2016 and fall-winter 2017/2018. The model is driven by the Goddard Earth 
Observing System forward processing (GEOS-FP) assimilated meteorological fields, which have native horizon-
tal resolutions of 0.25° × 0.3125° and hourly to 3-hourly temporal resolutions, provided by the NASA Global 
Modeling Assimilation Office (GMAO). Global simulations with 2° × 2.5° horizontal resolutions and one-month 
spin-ups were conducted prior to nested simulations to provide hourly boundary and initial conditions. The nested 
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configuration covers the East Asian domain (15–55°N, 70–140°E) with 
0.25° × 0.3125° horizontal resolution, which corresponds to approximately 
30 × 30 km, and 47 vertical layers using hybrid pressure-sigma coordinates 
(1013.25–0.010 hPa).

For anthropogenic emissions, including ship emissions, we use the KORUS 
v5 inventory, which provides monthly emissions of carbon monoxide (CO), 
nitrogen oxides (NOx = NO + NO2), sulfur dioxide (SO2), ammonia (NH3), 
speciated VOCs, elemental carbon (EC), and primary organic carbon (POC) 
in East Asia for 2015–2016 (Jang et  al.,  2019; Woo et  al.,  2012). We use 
the Global Fire Emissions Database 4 (GFED4) inventory for daily biomass 
burning emissions (van der Werf et al., 2010) and the Model of Emissions of 
Gases and Aerosols from Nature (MEGAN) v2.1 to calculate online biogenic 
emissions (Guenther et al., 2012). Emission totals of CO, SOA precursors, 
and POC in South Korea, including anthropogenic, biomass burning, and 
biogenic sources for each simulation period, are summarized in Table 1.

Chemical species in GEOS-Chem are simulated using a detailed gas phase tropospheric chemistry mechanism, 
incorporating hydrogen oxide radicals (HOx = H + OH + peroxy radicals), NOx, VOCs, ozone (O3), and halogens, 
which is coupled with aerosol simulations that include both secondary inorganic aerosols (SIA; SO4

2−−NO3
−−

NH4
+) and carbonaceous aerosols (black carbon and organic aerosol). SIA thermodynamics in GEOS-Chem is 

computed using the ISORROPIA II thermodynamic equilibrium model (Fountoukis & Nenes, 2007). Carbona-
ceous aerosol simulations include black carbon (BC), referring to the light-absorbing surrogate of EC, which 
follows the work of Park et al. (2003) and is further described in Wang et al. (2014). GEOS-Chem simulates POC 
and SOA separately and defines tracers according to their hydrophilicity for POC and volatility for SOA. The 
model simulates two POC tracers, “OCPO” for hydrophobic POC and “OCPI” for hydrophilic POC, assuming 
that 50% of POC is emitted from combustion sources as OCPO, which is converted to OCPI with a lifetime of 
1.15 days (Cooke et al., 1999; Park et al., 2003). For conversion of POC to POA, we multiply the simulated POC 
concentrations by an organic aerosol to organic carbon ratio (OA/OC) of 1.3 based on observation-based studies 
(H. Kim, Zhang, et al., 2017, 2018; Philip et al., 2014). The model assumes an OA/OC ratio of 2.1 to calculate 
SOA partitioning and simulates SOA tracers as organic matter with molecular weights of 150–250 g mol−1. All 
unit conversions between mixing ratios and mass densities in the remainder of this study are based on standard 
temperature and pressure (STP; 273 K and 1013.25 hPa) conditions.

This study compares four different SOA schemes, including the two standard SOA options in GEOS-Chem, 
the “Complex” and “Simple” schemes, and two additional schemes introduced by Hodzic et al. (2016) and Jo 
et al. (2013), hereafter referred to as the “Hodzic” and “Jo” schemes. Brief explanations on the main features 
and updates in each scheme are summarized in Table 2. All schemes, except the Simple scheme, use the VBS 
approach, which allocates oxygenated organic compounds that are formed by the reactions between oxidants and 
parent hydrocarbons such as isoprene, terpenes (monoterpenes, sesquiterpenes), aromatics (benzene, toluene, 
xylene), and semi/intermediate volatile organic compounds (S/IVOCs), into several bins according to their satu-
ration concentrations (C*).

The Complex SOA scheme builds on the VBS framework implemented by Pye and Seinfeld (2010) with addition-
al updates on isoprene chemistry and SOA formation regarding irreversible uptake to aqueous aerosols (Marais 
et al., 2016). The volatility-based scheme originally uses isoprene, monoterpenes, and aromatic VOCs as parent 
hydrocarbons, which are oxidized by the hydroxyl radical (OH), O3, nitrate radical (NO3) and yield three isoprene 
SOA, four terpene SOA, and four aromatic SOA products. For isoprene SOA, we replace the three volatili-
ty-based products with six explicit SOA products that follow the work from Marais et al. (2016). SOA formation 
from terpenes, benzene, toluene, and xylene is simulated using the VBS framework with four bins.

The Simple SOA scheme implements a single lumped SOA precursor, “SOAP (SOA precursor)” with a lifetime 
of 1 day, which irreversibly forms a single lumped SOA tracer, “SOAS (SOA simple),” and a fixed SOA yield 
of 100%. SOAP emissions are calculated by scaling natural and anthropogenic emissions of isoprene, monoter-
penes, and CO (Chin et al., 2002; Cubison et al., 2011; Hayes et al., 2015; Hodzic & Jimenez, 2011; P. S. Kim 
et al., 2015; Shrivastava et al., 2017). Biogenic sources are assumed to emit SOAP and SOAS with identical mass 

Emissions [Tg 
month−1]

May 
2016

July 
2016

October 
2017

December 
2017

February 
2018

CO 0.190 0.166 0.141 0.133 0.120

Isoprene 0.030 0.068 0.009 0.000 0.001

Monoterpenes 0.013 0.030 0.007 0.001 0.001

Aromatics 0.031 0.030 0.030 0.029 0.026

S/IVOCs 0.018 0.016 0.014 0.014 0.013

POC 0.005 0.004 0.003 0.003 0.003

Table 1 
Monthly Emission Totals of Anthropogenic, Biomass Burning, and Biogenic 
CO, Secondary Organic Aerosols Precursors, and Primary Organic Carbon 
in Korea (South)
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yields, whereas biomass burning and fossil fuel sources only emit SOAP. The advantage of this method compared 
to the VBS approach is its computational efficiency and simplicity because it does not consider the dependence 
of SOA yields and gas-particle partitioning on factors such as temperature, NOx levels, and pre-existing organic 
mass.

The Hodzic SOA scheme considers nine precursors, including isoprene, monoterpenes, aromatic VOCs, and, 
additionally, S/IVOCs. In addition to the traditional SOA precursors, SOA formation by unspeciated organic 
compounds, either primarily emitted or formed by POA aging, is considered by incorporating S/IVOCs in the 
model. As emissions of S/IVOCs are not included in traditional emission inventories, we estimate anthropogenic 
and biomass burning emissions of S/IVOCs by scaling 50% of POC and 20% of NMVOCs (non-methane VOCs) 
emissions following the work of Jathar et al. (2014). The parent hydrocarbon species are oxidized by OH, O3, and 
NO3. They are allocated into six bins (C* = 0.01, 0.1, 1, 10, 100, 1000 μg m−3 at 300 K) with updated wall-cor-
rected mass yields based on a box model (SOM; Statistical Oxidation Model) study (Hodzic et al., 2016). While 
these updates increase SOA formation, other removal processes are included in the Hodzic scheme. First, the 
scheme accounts for the volatility dependence of Henry's law solubility coefficients (Heff), which enhances the 
dry and wet deposition of SOA. Second, photolytic loss of SOA is also included as a first-order reaction. Finally, 
the heterogeneous reaction of O3 with SOA is incorporated with an uptake coefficient (γ) of 10−5. The updated 
parameters can be found in Hodzic et al. (2016).

The Jo SOA scheme considered the same parent hydrocarbons used in the Hodzic scheme and was first imple-
mented and tested using GEOS-Chem v9-01-02 by Jo et al. (2013), and here we implemented it in GEOS-Chem 
v12.0.0. Precursor species undergo oxidation in the same manner as in the Hodzic scheme and yield a total of 
56 products, which are allocated and partitioned using five volatility bins (C* = 0.1, 1, 10, 100, 1000 μg m−3 at 
300 K). Yield parameters of S/IVOCs are based on Hodzic et al. (2016). The rest can be found in Jo et al. (2013). 
The prominent feature of this scheme is the chemical aging, that is, functionalization, of SOA from aromatics 
and S/IVOCs. These SOA products are assumed to react with OH with a rate constant of 4 × 10−11 cm3 mole-
cule−1 s−1, leading to a reduction of the vapor pressure and an overall increase in SOA production.

Scheme SOA precursors VBS approach SOA aging SOA yield Additional description Reference

Complex Isoprene, terpenes, 
benzene, 

toluene, xylene

Four bins 
(C* = 0.1–100) 

for terpenes, 
benzene, toluene, 

xylene

Only within VBS bins Griffin et al. (1999), 
Ng et al. (2007), 

Shilling 
et al. (2009), Zhang 

et al. (2006)

Updated isoprene chemistry 
and SOA formation 
(Marais et al., 2016)

Pye and 
Seinfeld. (2010)

Simple SOAP (scaled 
from isoprene, 
terpenes, CO 
emissions)

N/A N/A 100% (irreversible 
formation)

SOAP 100% converted to 
SOAS with a lifetime 

of 1 day

Hayes et al. (2015), 
Hodzic and 

Jimenez (2011), 
Shrivastava 
et al. (2017)

Hodzic Isoprene, terpenes, 
benzene, 

toluene, xylene, 
S/IVOCs

Six bins (C* = 0.01–
1000) for all 
precursors

Only within VBS bins Hodzic et al. (2016), 
Zhang et al. (2014)

Stronger production (wall-
corrected yields) and 

faster removal (updated 
Heff, photolysis, 
oxidation by O3)

Hodzic et al. (2016)

Jo Isoprene, terpenes, 
benzene, 

toluene, xylene, 
S/IVOCs

Five bins (C* = 0.1–
1000) for all 
precursors

Within VBS 
bins + functionalization

Farina et al. (2010) Chemical aging 
(functionalization) of 
SOA from aromatics 

and S/IVOCs (decrease 
in volatility)

Jo et al. (2013)

Table 2 
Comparison of the Four SOA Schemes Used in This Study
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3. Observations
3.1. KORUS-AQ

The Korea United States Air Quality (KORUS-AQ) campaign is an international air quality field campaign that 
was held in Korea during spring (1 May to 10 June) 2016, which was led by the Korean National Institute of 
Environmental Research (NIER) and the United States National Aeronautics and Space Administration (NASA; 
Crawford et al., 2021). Data archived during this field campaign include aircraft and surface measurements of 
trace gases, aerosols, and meteorological variables, with high spatial and temporal resolutions. We use 60-s av-
eraged airborne observations collected onboard the NASA DC-8 aircraft in the Seoul Metropolitan Area (SMA; 
37–37.6°N, 126.6–128°E). We also use surface observations at several ground sites located in the northern and 
eastern parts of Seoul (Figure 1): Bulkwang (37.61°N, 126.93°E), KIST (Korea Institute of Science and Technol-
ogy; 37.60°N, 127.05°E), Guui (37.55°N, 127.09°E), and Olympic Park (37.52°N, 127.12°E).

During the campaign, chemical compositions of non-refractory submicron particulate matter (PM1) were meas-
ured using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS; Canagaratna et al., 2007; 
DeCarlo et al., 2006), hereafter denoted as “AMS.” Airborne (DC-8) and surface (KIST) AMS observations of 
OA mass concentrations were measured and further analyzed by Nault et al. (2018) and H. Kim et al. (2018), 
respectively, providing detailed information on the composition of OA using positive matrix factorization (PMF) 
analysis (Ulbrich et al., 2009). Nault et al. (2018) apportioned DC-8 observations of OA into six factors, then 
recombined them into three organic components: hydrocarbon-like OA (HOA), less-oxidized oxygenated OA 
(LO-OOA), and more-oxidized oxygenated OA (MO-OOA). We consider HOA as POA and the sum of LO-OOA 
and MO-OOA as SOA. H. Kim et al. (2018) applied PMF analysis to ground observations of OA at the KIST 
site. They identified four organic components: hydrocarbon-like OA (HOA), cooking-influenced OA (COA), 
low-volatility oxygenated OA (LV-OOA), and semivolatile oxygenated OA (SV-OOA). For the KIST data, we 
define POA as the sum of HOA and COA and SOA as the sum of LV-OOA and SV-OOA.

Figure 1. Map of the Seoul Metropolitan Area showing 60-s averaged OA concentrations from AMS measurements 
along the DC-8 flight tracks averaged below 5 km during KORUS-AQ 2016. The ground monitoring sites in Seoul used 
in this study are marked with black stars. Horizontal and vertical lines indicate the GEOS-Chem model grid edges with 
0.25° × 0.3125° horizontal resolution.
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Hourly ground observations of carbonaceous aerosols (OC and EC) at Bulkwang and Olympic Park were op-
erated by NIER and the Seoul Research Institute of Public Health and Environment (SIHE), respectively. They 
used the semi-continuous OCEC carbon aerosol analyzer (Sunset Laboratory Inc.) based on a thermal-optical 
transmittance (TOT) method (Bauer et al., 2009; Birch & Cary, 1996). PMF analyses were not performed on 
OC observations from these sites, and therefore EC observations were used to estimate the composition of OC 
following the method described in Section 3.2.

Our analysis also uses supporting airborne observations of reactive gases such as CO, O3, NOx, NOy (=NOx + 
HNO3 + NO3

− + PAN + RONO2), and VOCs, which are summarized in Table 3. Hourly ground observations of 
major gases including CO, O3, and NOx from the AirKorea network (http://www.airkorea.or.kr/eng) were provid-
ed by the Korean Ministry of Environment at the Guui and Bulkwang sites. CO, O3, and NOx were also measured 
at Olympic Park by SIHE, using real-time analyzers (Ecotech EC9830/EC9810/EC9841). Hourly timeseries of 
VOCs including benzene, toluene, (o-, m-, p-) xylenes, and isoprene at Guui and Olympic Park were measured by 
SIHE using gas chromatography with flame ionization detection (GC-FID, Varian Inc.). Hourly ground observa-
tions of VOCs at Bulkwang were collected using proton transfer reaction mass spectrometry (PTR-MS) by NIER.

3.2. Surface Observations

As described in the previous section, the semi-continuous OCEC analyzer measured carbonaceous aerosols. We 
use additional surface observations at the Bulkwang ground site for model evaluation. Supporting observations 
of CO, O3, and NO2 were provided by the AirKorea network. For model evaluation, hourly timeseries of OC and 
EC mass concentrations during May/July 2016, October/December 2017, and February 2018 are used. We em-
ploy the EC tracer method following Equations 1 and 2; (Turpin & Huntzicker, 1995) to estimate the primary and 
secondary fractions in the observed total OC, assuming that POC and EC are co-emitted from the same sources. 
We use Deming regression analysis to determine the primary OC to EC ratio (OC/EC)primary. Refer to Section S1 
in the Supporting Information S1 for a detailed description of the EC tracer method.

POC = (OC∕EC)primary × EC + (OC)non−combustion (1)

SOC = OC − POC (2)

Table 4 compares the Deming regression slope between ambient OC and EC, that is, (OC/EC)primary, for each pe-
riod and the resulting monthly mean SOA mass fractions (%), which is defined as SOA/(SOA + POA). For con-
sistency with the model, we applied an OA/OC value of 1.3 for POC and 2.1 for SOC, as mentioned in Section 2. 
Note that there is a small difference (1%–7%) in total OA mass when seasonal ratios reported in observational 

Species Instrument Institution Reference

CO Differential Absorption CO Measurement (DACOM) NASA Langley Research Center Sachse et al. (1991)

O3, NO, NO2, NOy NCAR NOxyO3 Chemiluminescence National Center for Atmospheric Research Ridley and Grahek (1990), 
Weinheimer et al. (1994)

VOCs Whole Air Sampler (WAS) University of California, Irvine Colman et al. (2001)

Isoprene Proton Transfer Reaction Time of Flight Mass 
Spectrometer (PTR-ToF-MS)

University of Innsbruck/University of Oslo Müller et al. (2014)

Table 3 
Details on KORUS-AQ Observations of Gas Species Used in This Study

Deming fit May 2016 July 2016 October 2017 December 2017 February 2018

(OC/EC)primary 0.78 ± 0.01 1.08 ± 0.01 2.76 ± 0.10 3.20 ± 0.01 3.43 ± 0.05

SOA fraction (%) 76 ± 2 81 ± 2 41 ± 3 37 ± 2 56 ± 2

Table 4 
(OC/EC)primary Values Determined by Deming Regression Between Surface OC and EC Measurements Used in the EC 
Tracer Method and Resulting Monthly Mean SOA Mass Fractions (%) for Each Period

http://www.airkorea.or.kr/eng
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studies (H. Kim, Zhang, et al., 2017, 2018; Huang et al., 2017; Xing et al., 2013), 1.8 (spring-summer) and 1.6 
(fall-winter), are used to convert OC to OA mass.

The estimated secondary portions of the observed OA mass concentrations at the Bulkwang and Olympic Park 
sites during KORUS-AQ are 62% and 53%, respectively. PMF results at the KIST site for the same period showed 
that 61% of observed OA mass was related to secondary formation. The secondary fraction may differ on a 
local scale, on whether the measurement site is affected by factors such as heavy traffic, residential emissions, 
or biogenic emissions (Robinson et al., 2007). All three sites are located near busy roads surrounded by large 
residential areas. The EC tracer method shows consistent results with the PMF analysis results for surface air in 
Seoul regarding the various local environments surrounding each measurement site.

4. Model Evaluation During KORUS-AQ
4.1. Total OA and SOA Precursors

Figure 2 compares daily mean timeseries of observed and simulated total OA (=POA + SOA) concentrations 
using different SOA schemes at Seoul during 1 May–10 June 2016. Surface values were averaged at three ground 
sites (Bulkwang, KIST, Olympic Park) and compared to the closest model grid box values. AMS observations of 
POA and SOA, characterized using PMF analysis, in the boundary layer (<1.5 km) along the DC-8 flight track 
over Seoul (37.4–37.6°N, 127–12 7.2°E) are compared with simulated OA concentrations, which were sampled 
coherently in time and space. Mean vertical profiles within the SMA from the ground to 5 km are also shown for 
comparison.

Observed total OA concentrations at the ground sites and onboard the DC-8 show similar temporal variations, 
with a distinct peak during 19–24 May, caused by a considerable enhancement of SOA. PMF results showed that 
SOA observed at KIST and onboard the DC-8 during this period were more likely to be aged and less volatile, in-
dicating that photochemistry and aging processes associated with long-range transport enhanced SOA formation 
(H. Kim et al., 2018; Nault et al., 2018).

Figure 2. Comparison of observed and simulated daily mean (a) surface and (b) airborne (<1.5 km) OA, primary organic aerosols, and secondary organic aerosols 
concentrations at Seoul, and (c) OA vertical profiles in the Seoul Metropolitan Area (SMA) during KORUS-AQ 2016. Observations and the ensemble of all models 
are indicated in black and blue bars and circles, and individual models are shown in different colors and markers. In panel (a) solid lines represent daily mean OA 
concentrations from observations with error bars indicating the uncertainties and the ensemble model averaged at three ground sites (Bulkwang, KIST, Olympic Park) 
in Seoul. In panel (b) the bars indicate average values of each research flight from DC-8 observations in Seoul below 1.5 km with model values sampled coherently 
in time and space. Statistics (NMB, R) for the ensemble model performance are denoted above the timeseries. In panel (c) mean vertical profiles (circles) with 0.5 km 
intervals from DC-8 observations and model values sampled coherently along the flight tracks within the SMA are presented in different colors and markers. Boxes, 
whiskers, and vertical bars indicate the interquartile range, the 10th and 90th percentiles, and the median value from observations. The colored shadings indicate the 
synoptic periods discussed in the text.
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The ensemble model, representing the arithmetic mean of the four schemes, shows a 6% underestimation com-
pared to ground observations of total OA, with normalized mean biases (NMB) from individual schemes ranging 
from −42% to 35% (Figure 2a). Pearson correlation coefficients (R) between the simulations and observation 
lie within 0.24–0.58. Overall, the Jo scheme simulates the highest OA concentrations followed by the Simple 
scheme, which lies between the amounts simulated by the Hodzic and Jo schemes. The Hodzic and Jo schemes 
better represent daily variations of observed OA (R ≥ 0.42) compared to the Simple scheme (R = 0.24).

All schemes except for the Jo scheme (NMB = 8%) underestimate (NMB = −24% to −55%) airborne observa-
tions of total OA in the boundary layer, with correlation coefficients ranging from 0.37 to 0.59 (Figure 2b). The 
ensemble model underestimates OA in the Seoul boundary layer by 27%, with a temporal correlation coefficient 
of 0.51. Underestimation is consistently shown in the Complex scheme (NMB = −43% and −55% in surface air 
and the boundary layer, respectively), indicating that additional sources and updated yield parameters are neces-
sary for reproducing observed OA concentrations in Seoul.

The observed vertical distribution of total OA in the SMA from the ground to 5 km is well captured by all 
schemes (R ≥ 0.96) but is underestimated by the ensemble model (Figure 2c). Unlike OA, we do not find any 
significant model biases in simulated surface SIA (Figure S2 in Supporting Information S1) and its precursors 
(not shown), implying that physical processes such as aerosol deposition are less likely to be the cause of OA 
underestimation. Moreover, Luo et al. (2020) investigated model sensitivity to changes in wet processes using 
GEOS-Chem and found that updates in parameters for aqueous-phase chemistry, cloud microphysics, and wet 
scavenging improved SIA simulations but had minor impacts on OA simulations.

In order to investigate the cause of the model-observation discrepancies, we also compare observed and simulated 
SOA precursors for KORUS-AQ. Figure 3 shows the daily mean timeseries of gaseous species at the Bulkwang, 
Guui, and Olympic Park ground sites and in the boundary layer along the DC-8 flight track over Seoul. CO, 
which is used as a tracer for estimating fossil fuel and biomass burning emissions of SOAP in the Simple scheme, 
is consistently underestimated compared to both ground and airborne observations. This issue was addressed in 
several studies as an uncertainty in the KORUS v5 bottom-up emissions inventory (Gaubert et al., 2020; Park 
et al., 2021). Among the significant biogenic species, isoprene is overestimated at the surface (NMB = 45%) and 
in the boundary layer (NMB = 9%). Simulated aromatics (=benzene + toluene + xylene) are also overestimated 
compared to ground observations but generally follow the observed daily variations. In contrast, the model shows 

Figure 3. Comparison of observed and simulated daily mean CO, daytime (10:00−18:00 local time) Ox (=O3 + NO2), and secondary organic aerosols precursors 
including aromatic VOCs (=benzene + toluene + xylenes) and isoprene at Seoul during KORUS-AQ 2016. Solid lines and bars indicate surface timeseries and average 
values of each research flight onboard the DC-8, respectively. Daily mean timeseries averaged at three ground sites (Bulkwang, Guui, Olympic Park) were used to 
represent the observed and simulated surface concentrations. DC-8 observations in Seoul below 1.5 km were used, and model values were sampled coherently in time 
and space. The model performance statistics (NMB, R) are denoted in upper-left corners. The colored shadings indicate the synoptic periods discussed in the text.
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an underestimation and poor correlation compared to airborne observations. This discrepancy may imply model 
uncertainties associated with boundary layer mixing and gas-phase chemistry, requiring additional validation 
sensitivity tests.

Daily variations of precursor species were likely to be highly influenced by synoptic patterns (Peterson 
et al., 2019). In the following paragraphs, we evaluate model performance regarding the effect of meteorological 
conditions on SOA and its precursors. Four different synoptic periods are indicated in colored shadings in Fig-
ures 2 and 3, and the remainder of this study.

4.1.1. Dynamic Weather Period (1−16 May)

The first 2 weeks of May were characterized as a dynamic weather period with frequent precipitation and relative-
ly strong surface wind (Figure S2 in Supporting Information S1). As a result, observed surface VOCs and daytime 
(10:00–18:00 local time; LT) Ox (=O3 + NO2) levels (Figure 3) were low due to suppressed photochemical activ-
ity and strong dynamic forcing during this period. Although precipitation amounts are slightly underestimated in 
the model (Figure S2 in Supporting Information S1), rain events and strong winds are well represented compared 
to surface observations. However, simulated diurnal variations of aromatic species during this period show sharp 
nighttime through early morning peaks caused by too low nighttime boundary layer heights in the model (Oak 
et al., 2019), resulting in overestimations of daily mean values.

4.1.2. High Organic Period (17−24 May)

This period was influenced by stagnation and large-scale subsidence (Peterson et  al.,  2019), resulting in the 
weaker surface wind with warm and dry conditions (Figure S2 in Supporting Information S1). Increased anthro-
pogenic VOCs concentrations show the effect of local emissions and accumulation under stagnant meteorology 
(Figure 3). Daytime Ox levels were also increased (Figure 3), implying enhanced photochemistry due to increased 
temperature and high precursor concentrations (H. Kim et al., 2018).

Unlike inorganic aerosol (i.e., SIA) formation, which favors humid conditions (Liu et al., 2018), observed SOA 
concentrations at Seoul during KORUS-AQ show a negative relationship with relative humidity (RH; Figure 
S3 in Supporting Information S1). Observational studies found that photochemistry was suppressed under high 
RH conditions, and larger anthropogenic SOA mass loadings and yields were observed with lower RH due to 
increased formation of oligomers in the absence of seed particles (Hinks et al., 2018; Liang et al., 2019; Liu 
et al., 2019; Zhang et al., 2019). Total PM loading and inorganic aerosol concentrations were particularly low 
during this period (Figure S2 in Supporting Information S1), providing a less-favorable condition for particle 
growth onto existing aerosols. This also implies that along with increased VOC oxidation via local photochem-
istry, enhanced oligomerization of oxidized VOCs may have contributed to SOA formation during 19–24 May.

All schemes fail to simulate SOA enhancement during the high organic period (Figure 2), although simulated 
precursor VOCs concentrations do not show any negative biases from observations (Figure 3). While the model 
simulates larger cloud fractions than observations (Figure S2 in Supporting Information S1), insufficient photo-
chemistry or missing sources from transboundary transport may have contributed to the underestimation of SOA 
formation. Due to SOA underestimation, the model ensemble does not display a clear negative relationship with 
RH (Figure S3 in Supporting Information S1).

4.1.3. High Inorganic Period (25−31 May)

Seoul experienced extreme PM2.5 pollution, frequently exceeding the Korean 24-hr standard of 35 μg m−3 (Figure 
S2 in Supporting Information S1), and bad visibility during 25–31 May (Jordan et al., 2020) due to a mixture of 
local emissions and transport of pollutants from China caused by predominant westerlies and frontal passages 
(Choi et al., 2019; Peterson et al., 2019). Observed SIA concentrations and anthropogenic pollutants such as CO 
and aromatic VOCs showed noticeable elevations (Figure S2 in Supporting Information S1, Figure 3) during this 
period, and POA also showed a gradual increase during 25–27 May (Figure 2). However, despite the abundance 
of precursor VOCs, observed SOA concentrations remained flat and relatively low compared to 17–22 May.

SOA formation is affected by the total abundance of SOA precursors and the relative contribution of precursors 
with high reactivities and high SOA yields, for example, toluene. We find that the observed toluene to benzene 
ratio was lower during this period than the high organic period, especially due to the increase of benzene, which 
may have caused less efficient SOA formation. In addition, as photochemistry plays a dominant role in SOA 
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formation during the springtime (H. Kim et al., 2018), high RH (50%–80%) seems to have suppressed SOA for-
mation in the aqueous phase for this case (Figure S3 in Supporting Information S1).

Simulated fine PM, SIA, CO, and aromatic VOCs tend to follow the observed fluctuations, showing that the 
model successfully captures the eastward transport of anthropogenic pollutants. However, high precursor concen-
trations cause the overestimation of SOA in the Simple and Jo schemes (Figure 2), as the SOA timeseries from 
both schemes generally follow the timeseries characteristics of their main precursor species: CO and aromatics. 
Also, as a constant emission ratio (10:1) was applied to split lumped aromatic emissions into toluene and benzene 
in the model, the ambient ratio remains nearly unaltered, causing model-observation discrepancies in the toluene 
to benzene ratio.

4.1.4. Blocking Pattern Period (1−7 June)

During 1–7 June, a blocking pattern that consisted of a high-pressure system located north of a low, character-
ized as a “Rex Block” (Rex, 1950), caused stagnant conditions and inhibited the long-range transport of pollut-
ants to the Korean peninsula, which resulted in accumulation of local pollutants (Jordan et al., 2020; Peterson 
et al., 2019). Compared to the stagnation period (17–24 May), which showed high OA levels, not only were 
surface conditions less stagnant (Peterson et al., 2019) but also larger cloud fractions suppressed photochemistry 
(Figure S2 in Supporting Information S1), causing lower SOA (Figure 2) and Ox levels (Figure 3). While surface 
observations showed that SOA and daytime Ox levels were 60% and 14% lower during this period than the earlier 
stagnation period, simulated SOA was higher by 19%, and Ox levels were lower by only 4%. The model also 
shows considerable overestimations of aromatic VOCs (Figure 3) and SIA (Figure S2 in Supporting Informa-
tion S1) caused by peaks during 21:00–06:00 LT, mainly due to the shallow nighttime boundary layer in the mod-
el, similar to that during the dynamic weather period. Simulated diurnal profiles of aromatics and SOA during 
this period show similar variations, indicating that the shallow boundary layer and overestimation of precursor 
VOCs are likely the main cause of SOA overestimation.

4.2. Photochemical Evolution of SOA

In this section, we analyze the photochemical evolution of observed and simulated SOA during KORUS-AQ to 
investigate the degree of atmospheric aging and its effect on the formation and loss processes of SOA. To account 
for the dilution of SOA with background air during its formation, we use the dilution-corrected CO (∆CO) and 
calculate photochemical age using NOx, NOy, and aromatic hydrocarbons.

CO is a relatively inert tracer with an atmospheric lifetime of 1 month and is primarily emitted from biomass 
burning and fossil fuel sources (Gaubert et al., 2020; Lee-Taylor et al., 2011). While fossil fuel use dominates CO 
emissions in East Asia, the ratio of ambient OA to CO enhancement, ∆CO (=COambient–CObackground), can be used 
as a proxy to investigate local OA formation from anthropogenic sources and account for the effect of dilution 
and boundary layer dynamics (DeCarlo et al., 2010; Lee-Taylor et al., 2011; Woody et al., 2016). The estimation 
of enhancement ratios tends to depend highly on the CObackground value and therefore is often defined as the slope 
of the regression between ambient OA and CO (de Gouw & Jimenez, 2009). In this section, we use CObackground 
values based on observational analysis and a tagged CO simulation. In Section 5, we use the slope of reduced 
major axis (RMA) regression between ambient OA and CO to estimate the enhancement ratios.

We use a background value of 200 ppbv, which Nault et al. (2018) identified using back trajectory analysis to 
represent the observed CObackground in Korea during KORUS-AQ. Because CO concentrations are underestimated 
in the model (Figure 3), using the same background value (200 ppbv) will cause severe underestimation of ∆CO. 
Therefore, to identify the simulated CObackground value, we conducted a tagged CO simulation for the KORUS-AQ 
period using GEOS-Chem v12.6.3 with the identical meteorology and emissions that we used for model eval-
uation. In the tagged CO simulation, CO is tagged by its source region, emission type, and chemical formation 
process to quantify the contribution of each source to ambient CO concentrations. We define Korea's background 
CO as the sum of CO produced by the oxidation of hydrocarbons and from foreign anthropogenic and biomass 
burning sources. The resulting tagged CO simulation showed that the simulated average background CO in the 
boundary layer is 127 ppbv.

For photochemical age calculation, we incorporate the NOx/NOy clock (Kleinman et al., 2008) for the model 
results and the airborne observations. We investigate the photochemical processing of SOA for ages less than 
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one equivalent day due to the atmospheric nature and chemical characteristics of the NOx/NOy clock (Nault 
et al., 2018). We calculated photochemical age at the KIST ground site using the (m-, p-) xylene/ethylbenzene 
(X/E) clock (Parrish et al., 2007) due to lack of NOy observations, but found that air masses in surface air were 
generally less aged, with an average age of 7 hours. Therefore in this section, we use airborne PMF analysis re-
sults of AMS observations in the SMA to focus on the evolution of SOA under aged conditions. Refer to Section 
S2 in Supporting Information S1 for a detailed description of the calculation of photochemical age.

We find that the observed POA/∆CO ratio remains flat with an average value of 20 μg m−3 ppmv−1, showing no 
distinct relationship with photochemical age. Therefore, we focus on the SOA evolution and compare observed 
and simulated SOA/∆CO ratios in the SMA boundary layer. Note that we do not account for the background 
value of SOA, assuming that the majority of SOA in the SMA is formed on a local scale based on observational 
analysis (Nault et al., 2018).

Figure 4 shows that the observed airborne SOA/∆CO ratio gradually increases with photochemical age, with 
a sharp gradient between 5–15 hr. We find that the observed tendency is also dependent on the flight altitude, 
where both the SOA/∆CO ratio (not shown) and photochemical age increase with altitude (Figure S4c in Sup-
porting Information  S1). Simulated SOA/∆CO ratios in the boundary layer are underestimated compared to 
airborne observations, regardless of SOA schemes. This is consistent with model evaluation results in Section 4, 
where all models underestimated the observed vertical profile of OA mass concentrations. The Jo scheme best 
represents the observed rapid formation between 5–8 hr among the four schemes. A noticeable increase in the 

Figure 4. Observed and simulated mean secondary organic aerosols/ΔCO ratios versus photochemical age calculated along 
the DC-8 flight tracks in the Seoul Metropolitan Area below 1.5 km during KORUS-AQ 2016. The number of data points 
used for binning is denoted in the lower-right (Jo) panel. Vertical bars indicate the interquartile range and the median of 
observed values.
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aromatic SOA portion in the Jo scheme results from the additional functionalization process. However, while 
observed SOA production continues to increase between 20–24 hr, simulated SOA production peaks before 20 hr 
and either remains flat or declines afterward, explaining the cause of SOA underestimation during 17–22 May. 
Overall comparison of observed and simulated enhancement ratios suggests that most schemes underpredict SOA 
aging in the boundary layer.

4.3. Impact of Chemical Aging on Simulated SOA

Model evaluation of our four SOA schemes shows that the inclusion of S/IVOCs and chemical aging, that is, 
functionalization, of SOA can improve the skill of the OA simulation. However, among the SOA schemes that 
incorporate S/IVOCs as SOA precursors, the Hodzic scheme often underestimates observed surface SOA con-
centrations. The Jo scheme tends to show overestimation due to the significant enhancement of the aromatic SOA 
portion. Therefore in this section, we further examine the effect of chemical aging on simulated OA by conduct-
ing a sensitivity simulation combining the two schemes. With the updates of wall-corrected SOA yields from 
Zhang et al. (2014), volatility-dependent Heff, photolytic loss of SOA, and heterogeneous oxidation by O3 in the 
model, we can attain a better representation of SOA formation and loss processes, and at the same time consider 
additional decreases of volatility and increases in organic mass through SOA aging via functionalization.

Figures 5a and 5b compare results of PMF analyses and model performance during the KORUS-AQ period with 
the inclusion of chemical aging using an aging constant of 4 × 10−11 cm3 molecule−1 s−1 to the Hodzic scheme. 
Semivolatile SOA (SV-SOA) and low-volatility SOA (LV-SOA) represent the oxidized components (OOA) of 
observed OA. SV-SOA refers to SOA with C* ≥ 1 and the rest are defined as LV-SOA in the model. Chemical 
aging of aromatic SOA increases simulated total SOA concentrations by 14%–22% in the SMA. We find that the 
simulated mass of low-volatility (C* ≤ 0.1) SOA increases by 27%–40%, while the semivolatile (C* ≥ 1) portion 

Figure 5. Comparison of observed and simulated mean OA concentrations (a–b) in the Seoul Metropolitan Area boundary 
layer and at the KIST ground site during KORUS-AQ and (c–d) at Seoul ground sites during different seasons. Observed 
and simulated secondary organic aerosols (SOA fractions) (%) are denoted above each bar. All comparisons except for (a) 
are based on surface data. In panels (a–b) PMF-resolved OA components during KORUS-AQ are compared with simulated 
results. HOA and COA represent the primary component of observed OA. Semivolatile SOA (SV-SOA) and low-volatility 
SOA (LV-SOA) represent the secondary component of observed OA. SV-SOA refers to SOA with C* ≥ 1 and the rest are 
defined as LV-SOA in the model. See Section 3.1 for details on PMF analyses during KORUS-AQ.
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remains unaltered. Although all our models, including the aging Hodzic and Jo schemes, underestimate SOA 
formation in higher altitudes within the boundary layer, the aging Hodzic scheme shows the best performance in 
reproducing observed SOA in surface air.

Despite the improvement in model performance, we still find that the model fails to capture significant peaks 
(e.g., 16–24 May) that were noticeable in observed surface timeseries (Figure 2a). Figure 6 compares observed 
and simulated SV-SOA/LV-SOA ratios during KORUS-AQ 2016. Observed surface ratios during the high organ-
ic period show a sharp decrease at 21 May, indicating that observed SOA was more likely to be aged than freshly 
produced. As potential influences of Siberian wildfires during 16–24 May were discussed in previous studies 
(Kang et al., 2020; Peterson et al., 2019), chemical aging during the long-range transport of OA emitted from 
biomass burning sources may have resulted in the elevation of the LV-SOA portion. However, all models fail 
to capture this rapid change in SOA composition, regardless of the chemical aging process, indicating possible 
missing sources of SOA from biomass burning sources. Several studies reported that the GFED biomass burn-
ing emissions underestimate POA emissions (Lou et al., 2020) and also found that a simple empirical treatment 
that accounts for the aging of POA from biomass burning sources to form SOA shows good performance in 
simulating surface OA loadings (Lou et al., 2020). These implications call for additional sensitivity tests for the 
KORUS-AQ period but are beyond the scope of this paper.

5. Seasonal Characteristics of OA in Surface Air
5.1. Spring-Summer Season

In addition to the KORUS-AQ period evaluation, we evaluate simulated results during summer 2016 using sur-
face OCEC measurements and the EC tracer method at the Bulkwang site in Seoul. Previous studies using PMF 
analyses to resolve OA sources in Seoul reported that ∼75% of observed total OA comprised SOA during sum-
mer 2014, with the SV-OOA component being more dominant than LV-OOA (J. H. Kim, Park, et  al., 2017; 
Park et al., 2018). J. H. Kim, Park, et al. (2017) found that among the three SOA factors that were resolved, 25% 
showed the characteristics of semivolatile POA, reflecting the effect of POA aging during the summer season.

Figures 5a–5c compare observed and simulated mean POA and SOA concentrations in the boundary layer in the 
SMA and at ground sites in Seoul during May and July 2016. We find that PMF results using airborne (DC-8) 
AMS measurements show a large secondary fraction (88%) and a relatively small primary fraction. Observed 
surface SOA during spring-summer makes up 66% of total OA mass in Seoul, resulting in a more significant pri-
mary fraction than the airborne data. PMF analysis of surface OA implies that this discrepancy may be due to the 
influence of cooking-related primary organic emissions, resolved as the COA factor, which is more likely to be 
captured in surface air (H. Kim et al., 2018). Therefore, the POA fraction in DC-8 observations can be interpreted 
as a lower limit in the SMA boundary layer.

Simulated POA concentrations are consistently overestimated compared to observations during the spring and 
summer seasons, implying either an overestimation of POA emissions or that the semivolatility of POA should 
be considered in models. As discussed in previous sections, the Jo and Simple schemes simulate the largest 
amounts of SOA, resulting in similar SOA fractions (61–71%) with surface observations, but overestimating mass 

Figure 6. Comparison of observed and simulated SV-SOA/LV-SOA ratios during KORUS-AQ 2016. positive matrix 
factorization analyses using AMS observations at the KIST ground site in Seoul are compared with simulated results using 
the Hodzic, aging Hodzic, and Jo schemes. The colored shadings indicate the synoptic periods discussed in Section 4.
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concentrations. Aromatics and S/IVOCs are the main contributors to SOA formation in the Jo scheme, indicating 
that considering SOA aging only through functionalization, when aging involves several other pathways in the at-
mosphere, including fragmentation (Chacon-Madrid & Donahue, 2011), may cause overestimation in surface air.

Noticeable portions in simulated biogenic contributions occur in warm seasons due to increased temperature and 
biogenic emissions (Table 1) compared to other seasons. As a result of increased biogenic emissions, observed 
surface isoprene concentrations during July were 3.6 times higher on average than May, whereas aromatic VOCs 
levels were comparable (not shown). We also find that the contribution of aromatics to simulated SOA in the Jo 
scheme is even larger than that during May, which can be explained by increased chemical aging due to elevated 
OH during the summer season.

Observed hourly OA and Ox at Seoul during the summer are tightly correlated with a higher correlation coeffi-
cient than during the spring season (Figures S5a−S5b in Supporting Information S1). Simulated OA using the 
Hodzic and Jo schemes among the different SOA schemes show the highest correlations with simulated Ox con-
centrations. In contrast, the photochemical relationship is not shown in the Simple scheme. Despite the increase 
of biogenic VOCs and the strong impact of photochemistry, observed OA mass during July is smaller than May. 
Simulated results from the Hodzic and Jo schemes show that SOA from aromatics and S/IVOCs have decreased 
compared to May, resulting in an overall decrease of total SOA mass.

5.2. Fall-Winter Season

We conducted additional simulations for the fall-winter season of 2017/2018 using the same model configura-
tions described in Section 2. Although anthropogenic emissions from the KORUS v5 inventory are based on 
2015 estimates, we did not apply additional scaling or projections as previous studies and statistics showed that 
anthropogenic emissions in Korea did not show significant annual trends from 2015 through 2018 (NIER, 2020). 
We evaluate simulated results using surface OCEC measurements and the EC tracer method at the Bulkwang site.

Park et al. (2018) performed PMF analysis of OA measurements at the Bulkwang site during fall-winter 2014 
and found that the observed POA fraction was ∼30%. PMF analysis of OA measurements at the KIST site during 
winter 2015/2016 showed that 59% of total OA mass was characterized as POA, with a significant contribution of 
biomass burning-related sources (H. Kim, Zhang, et al., 2017). A similar analysis by Schroder et al. (2018) also 
found that 42% of airborne observations of total OA during winter 2015 in the northeast US was primary, with a 
33% contribution from biomass burning.

Figure 5d compares observed and simulated mean surface POA and SOA concentrations at Seoul during October, 
December 2017, and February 2018. Estimated POA concentrations using OC and EC observations are signifi-
cantly higher than those during spring and summer, reflecting the observed seasonal variation of EC caused by 
increased residential or open heating and prevailing westerlies carrying pollutants from upwind regions (Park 
et al., 2015). However, the models tend to underestimate observed POA concentrations and show lower POA 
concentrations during the fall-winter period compared to the spring-summer period.

Most POA emissions in the KORUS v5 inventory are from mobile on-road transportation in Seoul. According to 
the Korea Expressway Cooperation (http://www.ex.co.kr) and Seoul Transport Operation and Information Ser-
vice (https://topis.seoul.go.kr/), traffic volumes in Seoul and nearby expressways tend to increase with tempera-
ture and decrease with bad weather such as rain or snow, resulting in higher traffic during spring and summer than 
in winter. Therefore, the seasonal variation of traffic emissions is imposed in total anthropogenic POA emissions 
(Table 1), which results in low simulated POA concentrations during the fall-winter period. The mismatch be-
tween the seasonalities of POA emissions from KORUS v5 and observed carbonaceous aerosols calls for revision 
of bottom-up emissions.

Observed SOA fractions at Seoul are smaller than 50%, and OA concentrations show a relatively weak correlation 
with photochemistry during the fall-winter period (Figures S5c−S5e in Supporting Information S1). The Simple 
and Jo schemes overestimate simulated SOA concentrations and SOA fractions. Although underestimation of CO 
is more evident during this period (NMB = −56 to −66%) compared to spring-summer (NMB = −16 to −40%), 
the Simple scheme simulates excess SOA, indicating that either the SOAP emissions scaled from CO emissions 
are too large or the assumed lifetime (1 day) of SOAP may be too short causing the rapid formation of SOA in the 

http://www.ex.co.kr
https://topis.seoul.go.kr/
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fall-winter seasons in Seoul. On the other hand, simulated aromatic VOCs are 
generally overestimated in the model (not shown), resulting in an overestima-
tion of SOA simulated from the Jo scheme.

Table  5 compares observed and simulated OA to CO enhancement ratios 
(i.e., RMA regression slope of OA vs. CO) during different seasons. The 
observed ∆OA/∆CO value during spring-summer is 38 μg m−3 ppmv−1, 2.5 
times larger than that during fall-winter. The ensemble mean of simulated 
surface ∆OA/∆CO ratios is well reproduced during spring-summer, but this 
is because the model biases in POA and SOA cancel each other out. During 
fall-winter, overestimation of both the ∆POA/∆CO and ∆SOA/∆CO ratios 
results in an overestimation of simulated ∆OA/∆CO.

6. Summary and Conclusions
A 3-D global CTM, GEOS-Chem, was used to simulate OA in Seoul using four different SOA schemes (Com-
plex, Simple, Hodzic, Jo) during spring-summer 2016 and fall-winter 2017/2018. The Complex SOA scheme 
uses the VBS approach and simulates SOA formed from traditional parent hydrocarbons, including isoprene, 
monoterpenes, and aromatic hydrocarbons. The Simple SOA scheme implements a single lumped SOA pre-
cursor, whose emissions are estimated by scaling anthropogenic and biomass burning CO and biogenic VOCs 
emissions, and irreversibly forms a single lumped SOA product. The Hodzic and Jo schemes both use the VBS 
approach and simulate SOA formed from isoprene, monoterpenes, aromatics, and additionally S/IVOCs. The 
Hodzic scheme uses updated SOA yields, Heff, and additional SOA removal pathways, boosting both the sources 
and sinks of SOA. The Jo scheme considers the chemical aging of aromatic SOA, which increases SOA mass.

For model evaluation, we used ground and airborne OA (OC) observations measured using the AMS and OCEC 
carbon analyzer. We found that simulated POA was overestimated during spring-summer but underestimated 
during fall-winter. During the spring-summer seasons, the Jo scheme simulated the highest SOA concentrations, 
followed by the Simple and Hodzic schemes. The Complex scheme underestimated observed SOA concentrations 
compared to the Hodzic and Jo schemes, regardless of seasons. The Simple scheme simulated the largest amounts 
during fall-winter, followed by the Jo and Hodzic schemes. Overall, model evaluation for SOA at Seoul showed 
that:

1.  The Complex scheme severely underestimated observed SOA concentrations, emphasizing the critical role of 
S/IVOCs as SOA precursors.

2.  The Simple scheme generally overestimated observed SOA concentrations, implying uncertainties in the rep-
resentation of SOAP emissions and the lifetime of SOAP.

3.  The Hodzic scheme slightly underestimated observed SOA concentrations but reproduced observed photo-
chemical characteristics of SOA.

4.  The Jo scheme generally overestimated observed SOA concentrations with significant enhancements of the 
aromatic contribution due to chemical aging.

5.  The inclusion of chemical aging to the Hodzic scheme resulted in a 14%–22% increase of simulated SOA 
during May 2016 due to the increase of low-volatility SOA.

To conclude, for better model representation of SOA formation in urban environments such as in Seoul, we 
recommend the inclusion of additional S/IVOCs precursors and chemical aging processes of SOA. For computa-
tional efficiency, the Simple SOA scheme is a good alternative but can lead to biases associated with bottom-up 
CO emissions depending on the study region.

Data Availability Statement
Ground observations of PM2.5, CO, O3, and NO2 in Korea are available online through https://www.airkorea.
or.kr/web (in Korean). Data from KORUS-AQ are available online through https://doi.org/10.5067/Suborbital/
KORUSAQ/DATA01. GEOS-Chem simulation results are available upon request.

Regression 
slope

Spring-summer Fall-winter

Observation
Model 

(Ensemble) Observation
Model 

(Ensemble)

∆OA/∆CO 38 ± 2 39 ± 1 15 ± 0 30 ± 1

∆POA/∆CO 6 ± 0 17 ± 0 8 ± 0 13 ± 0

∆SOA/∆CO 35 ± 2 27 ± 1 10 ± 0 20 ± 1

Table 5 
Comparison of Observed and Simulated Seasonal ∆OA/∆CO Obtained 
From RMA Regression Between Surface OA and CO
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https://www.airkorea.or.kr/web
https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01
https://doi.org/10.5067/Suborbital/KORUSAQ/DATA01


Journal of Advances in Modeling Earth Systems

OAK ET AL.

10.1029/2021MS002760

16 of 19

References
Bauer, J. J., Yu, X.-Y., Cary, R., Laulainen, N., & Berkowitz, C. (2009). Characterization of the sunset semi-continuous carbon aerosol analyzer. 

Journal of the Air & Waste Management Association, 59(7), 826–833. https://doi.org/10.3155/1047-3289.59.7.826
Bey, I., Jacob Daniel, J., Yantosca Robert, M., Logan Jennifer, A., Field Brendan, D., Fiore Arlene, M., et  al. (2001). Global modeling of 

tropospheric chemistry with assimilated meteorology: Model description and evaluation. Journal of Geophysical Research: Atmospheres, 
106(D19), 23073–23095. https://doi.org/10.1029/2001jd000807

Birch, M., & Cary, R. (1996). Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci-
ence and Technology, 25, 221–241. https://doi.org/10.1080/02786829608965393

Bond, T. C., Streets, D. G., Yarber, K. F., Nelson, S. M., Woo, J.-H., & Klimont, Z. (2004). A technology-based global inventory of black 
and organic carbon emissions from combustion. Journal of Geophysical Research: Atmospheres, 109(D14), D14203. https://doi.
org/10.1029/2003jd003697

Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q., & Worsnop, D. R. (2007). Chemical and microphysical 
characterization of ambient aerosols with the aerodyne aerosol mass spectrometer. Mass Spectrometry Reviews, 26(2), 185–222. https://doi.
org/10.1002/mas.20115

Chacon-Madrid, H. J., & Donahue, N. M. (2011). Fragmentation vs. functionalization: Chemical aging and organic aerosol formation. Atmos-
pheric Chemistry and Physics, 11(20), 10553–10563. https://doi.org/10.5194/acp-11-10553-2011

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., & Nakajima, T. (2002). Tropospheric aerosol optical thickness from 
the GOCART model and comparisons with satellite and sun photometer measurements. Journal of the Atmospheric Sciences, 59(3), 461–483. 
https://doi.org/10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2

Choi, J., Park, R. J., Lee, H.-M., Lee, S., Jo, D. S., Jeong, J. I., et al. (2019). Impacts of local vs. trans-boundary emissions from different sectors 
on PM2.5 exposure in South Korea during the KORUS-AQ campaign. Atmospheric Environment, 203, 196–205. https://doi.org/10.1016/j.
atmosenv.2019.02.008

Colman, J. J., Swanson, A. L., Meinardi, S., Sive, B. C., Blake, D. R., & Rowland, F. S. (2001). Description of the analysis of a wide range of 
volatile organic compounds in whole air samples collected during PEM-tropics A and B. Analytical Chemistry, 73(15), 3723–3731. https://
doi.org/10.1021/ac010027g

Cooke, W., Liousse, C., Cachier, H., & Feichter, J. (1999). Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and 
implementation and radiative impact in the ECHAM4 model. Journal of Geophysical Research: Atmospheres, 104(D18), 22137–22162. 
https://doi.org/10.1029/1999jd900187

Crawford, J. H., Ahn, J.-Y., Al-Saadi, J., Chang, L., Emmons, L. K., Kim, J., et al. (2021). The Korea-United States Air Quality (KORUS-AQ) 
field study. Elementa: Science of the Anthropocene, 9(1), 1–27.

Cubison, M. J., Ortega, A. M., Hayes, P. L., Farmer, D. K., Day, D., Lechner, M. J., et al. (2011). Effects of aging on organic aerosol from open 
biomass burning smoke in aircraft and laboratory studies. Atmospheric Chemistry and Physics, 11(23), 12049–12064. https://doi.org/10.5194/
acp-11-12049-2011

DeCarlo, P. F., Kimmel, J. R., Trimborn, A., Northway, M. J., Jayne, J. T., Aiken, A. C., et al. (2006). Field-deployable, high-resolution, time-of-
flight aerosol mass spectrometer. Analytical Chemistry, 78(24), 8281–8289. https://doi.org/10.1021/ac061249n

DeCarlo, P. F., Ulbrich, I. M., Crounse, J., de Foy, B., Dunlea, E. J., Aiken, A. C., et al. (2010). Investigation of the sources and processing of 
organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO. Atmospheric Chemistry and Physics, 10(12), 
5257–5280. https://doi.org/10.5194/acp-10-5257-2010

de Gouw, J., & Jimenez, J. L. (2009). Organic aerosols in the earth’s atmosphere. Environmental Science & Technology, 43(20), 7614–7618. 
https://doi.org/10.1021/es9006004

Donahue, N. M., Robinson, A. L., Stanier, C. O., & Pandis, S. N. (2006). Coupled partitioning, dilution, and chemical aging of semivolatile 
organics. Environmental Science & Technology, 40(8), 2635–2643. https://doi.org/10.1021/es052297c

Farina, S. C., Adams, P. J., & Pandis, S. N. (2010). Modeling global secondary organic aerosol formation and processing with the volatility basis set: 
Implications for anthropogenic secondary organic aerosol. Journal of Geophysical Research, 115(D9). https://doi.org/10.1029/2009jd013046

Fountoukis, C., & Nenes, A. (2007). ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2
+–Mg2

+–NH4
+–Na+ 

–SO4
2−–NO3

−–Cl−–H2O aerosols. Atmospheric Chemistry and Physics, 7(17), 4639–4659. https://doi.org/10.5194/acp-7-4639-2007
Gaubert, B., Emmons, L. K., Raeder, K., Tilmes, S., Miyazaki, K., Arellano, Jr, et al. (2020). Correcting model biases of CO in East Asia: 

Impact on oxidant distributions during KORUS-AQ. Atmospheric Chemistry and Physics Discussions, 2020, 1–49. https://doi.org/10.5194/
acp-2020-599

Griffin, R. J., Cocker, D. R., III, Flagan, R. C., & Seinfeld, J. H. (1999). Organic aerosol formation from the oxidation of biogenic hydrocarbons. 
Journal of Geophysical Research: Atmospheres, 104(D3), 3555–3567. https://doi.org/10.1029/1998JD100049

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., & Wang, X. (2012). The model of emissions of gases 
and aerosols from nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geoscientific 
Model Development, 5(6), 1471–1492. https://doi.org/10.5194/gmd-5-1471-2012

Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., et al. (2009). The formation, properties and impact of 
secondary organic aerosol: Current and emerging issues. Atmospheric Chemistry and Physics, 9(14), 5155–5236. https://doi.org/10.5194/
acp-9-5155-2009

Hayes, P. L., Carlton, A. G., Baker, K. R., Ahmadov, R., Washenfelder, R. A., Alvarez, S., et al. (2015). Modeling the formation and aging 
of secondary organic aerosols in Los Angeles during CalNex 2010. Atmospheric Chemistry and Physics, 15(10), 5773–5801. https://doi.
org/10.5194/acp-15-5773-2015

Hinks, M. L., Montoya-Aguilera, J., Ellison, L., Lin, P., Laskin, A., Laskin, J., et al. (2018). Effect of relative humidity on the composition of 
secondary organic aerosol from the oxidation of toluene. Atmospheric Chemistry and Physics, 18(3), 1643–1652. https://doi.org/10.5194/
acp-18-1643-2018

Hodzic, A., & Jimenez, J. L. (2011). Modeling anthropogenically controlled secondary organic aerosols in a megacity: A simplified framework 
for global and climate models. Geoscientific Model Development, 4(4), 901–917. https://doi.org/10.5194/gmd-4-901-2011

Hodzic, A., Jimenez, J. L., Madronich, S., Canagaratna, M. R., DeCarlo, P. F., Kleinman, L., & Fast, J. (2010). Modeling organic aerosols in a 
megacity: Potential contribution of semi-volatile and intermediate volatility primary organic compounds to secondary organic aerosol forma-
tion. Atmospheric Chemistry and Physics, 10(12), 5491–5514. https://doi.org/10.5194/acp-10-5491-2010

Hodzic, A., Kasibhatla, P. S., Jo, D. S., Cappa, C. D., Jimenez, J. L., Madronich, S., & Park, R. J. (2016). Rethinking the global secondary or-
ganic aerosol (SOA) budget: Stronger production, faster removal, shorter lifetime. Atmospheric Chemistry and Physics, 16(12), 7917–7941. 
https://doi.org/10.5194/acp-16-7917-2016

Acknowledgments
We thank all members of the KO-
RUS-AQ, NIER, SIHE instrument 
teams for providing measurements 
onboard the DC-8 and ground sites in 
Seoul. This work was supported by the 
National Research Foundation of Korea 
(NRF) grant funded by the Korean 
Ministry of Science and ICT (MSIT; 
NRF-2018R1A2B3004494, NRF-
2018R1A5A1024958), and the NIER, 
funded by the Ministry of Environment 
(ME) of the Republic of Korea (NIER-
2020-04-02-086 and NIER-2021-04-02-
189). B. A. Nault, P. C. Jost, and J. L. 
Jimenez, acknowledge the support by 
NASA grants NNX15AT96G, 80NSS-
C19K0124, and 80NSSC18K0630. PTR-
ToF-MS measurements aboard the NASA 
DC-8 during KORUS-AQ were supported 
by the Austrian Federal Ministry for 
Transport, Innovation and Technology 
(bmvit–FFG–ASAP). The PTR-MS 
instrument team (P. Eichler, L. Kaser, T. 
Mikoviny, M. Müller) is acknowledged 
for their support with field work and data 
processing.

https://doi.org/10.3155/1047-3289.59.7.826
https://doi.org/10.1029/2001JD000807
https://doi.org/10.1080/02786829608965393
https://doi.org/10.1029/2003jd003697
https://doi.org/10.1029/2003jd003697
https://doi.org/10.1002/mas.20115
https://doi.org/10.1002/mas.20115
https://doi.org/10.5194/acp-11-10553-2011
https://doi.org/10.1175/1520-0469(2002)059%3C0461:TAOTFT%3E2.0.CO;2
https://doi.org/10.1016/j.atmosenv.2019.02.008
https://doi.org/10.1016/j.atmosenv.2019.02.008
https://doi.org/10.1021/ac010027g
https://doi.org/10.1021/ac010027g
https://doi.org/10.1029/1999jd900187
https://doi.org/10.5194/acp-11-12049-2011
https://doi.org/10.5194/acp-11-12049-2011
https://doi.org/10.1021/ac061249n
https://doi.org/10.5194/acp-10-5257-2010
https://doi.org/10.1021/es9006004
https://doi.org/10.1021/es052297c
https://doi.org/10.1029/2009JD013046
https://doi.org/10.5194/acp-7-4639-2007
https://doi.org/10.5194/acp-2020-599
https://doi.org/10.5194/acp-2020-599
https://doi.org/10.1029/1998JD100049
https://doi.org/10.5194/gmd-5-1471-2012
https://doi.org/10.5194/acpd-9-3555-2009
https://doi.org/10.5194/acpd-9-3555-2009
https://doi.org/10.5194/acp-15-5773-2015
https://doi.org/10.5194/acp-15-5773-2015
https://doi.org/10.5194/acp-18-1643-2018
https://doi.org/10.5194/acp-18-1643-2018
https://doi.org/10.5194/gmd-4-901-2011
https://doi.org/10.5194/acp-10-5491-2010
https://doi.org/10.5194/acp-16-7917-2016


Journal of Advances in Modeling Earth Systems

OAK ET AL.

10.1029/2021MS002760

17 of 19

Huang, X., Liu, Z., Liu, J., Hu, B., Wen, T., Tang, G., et  al. (2017). Chemical characterization and source identification of PM2.5 at multi-
ple sites in the Beijing–Tianjin–Hebei region, China. Atmospheric Chemistry and Physics, 17(21), 12941–12962. https://doi.org/10.5194/
acp-17-12941-2017

Jang, Y., Lee, Y., Kim, J., Kim, Y., & Woo, J.-H. (2019). Improvement China point source for improving bottom-up emission inventory. 
Asia-Pacific Journal of Atmospheric Sciences, 56(1), 107–118. https://doi.org/10.1007/s13143-019-00115-y

Jathar, S. H., Gordon, T. D., Hennigan, C. J., Pye, H. O., Pouliot, G., Adams, P. J., et al. (2014). Unspeciated organic emissions from combustion 
sources and their influence on the secondary organic aerosol budget in the United States. Proceedings of the National Academy of Sciences of 
the United States of America, 111(29), 10473–10478. https://doi.org/10.1073/pnas.1323740111

Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q., Kroll, J. H., et al. (2009). Evolution of organic aerosols in the 
atmosphere. Science, 326(5959), 1525–1529. https://doi.org/10.1126/science.1180353

Jo, D. S., Park, R. J., Kim, M. J., & Spracklen, D. V. (2013). Effects of chemical aging on global secondary organic aerosol using the volatility 
basis set approach. Atmospheric Environment, 81, 230–244. https://doi.org/10.1016/j.atmosenv.2013.08.055

Jordan, C., Crawford, J., Beyersdorf, A., Eck, T., Halliday, H., Nault, B., & Schwarz, J. (2020). Investigation of factors controlling PM2.5 
variability across the South Korean Peninsula during KORUS-AQ. Elementa: Science of the Anthropocene, 8, 28. https://doi.org/10.1525/
elementa.424

Kang, S., Park, G., Park, T., Ban, J., Kim, K., Seo, Y., et al. (2020). Semi-continuous Measurements of Water-soluble Organic Carbon and Ionic 
Composition of PM2.5 in Baengnyeong Island during the 2016 KORUS-AQ (Korea-United States Air Quality Study). Asian Journal of Atmos-
pheric Environment, 14(3), 307–318. https://doi.org/10.5572/ajae.2020.14.3.307

Kim, H., Zhang, Q., Bae, G. N., Kim, J. Y., & Lee, S. B. (2017). Sources and atmospheric processing of winter aerosols in Seoul, Korea: Insights 
from real-time measurements using a high-resolution aerosol mass spectrometer. Atmospheric Chemistry and Physics, 17(3), 2009–2033. 
https://doi.org/10.5194/acp-17-2009-2017

Kim, H., Zhang, Q., & Heo, J. (2018). Influence of intense secondary aerosol formation and long-range transport on aerosol chemistry and prop-
erties in the Seoul Metropolitan area during spring time: Results from KORUS-AQ. Atmospheric Chemistry and Physics, 18(10), 7149–7168. 
https://doi.org/10.5194/acp-18-7149-2018

Kim, J.-H., Park, J.-S., Choi, J.-S., Park, J.-S., Park, S.-M., Song, I.-H., et al. (2017). A study on the characteristics of PM1.0 and source of organic 
components during summertime at Seoul and Baengnyeong Island. Journal of Korean Society for Atmospheric Environment, 17(3), 213–230.

Kim, P. S., Jacob, D. J., Fisher, J. A., Travis, K., Yu, K., Zhu, L., et al. (2015). Sources, seasonality, and trends of southeast US aerosol: An in-
tegrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model. Atmospheric Chemistry and 
Physics, 15(18), 10411–10433. https://doi.org/10.5194/acp-15-10411-2015

Kleinman, L. I., Springston, S. R., Daum, P. H., Lee, Y. N., Nunnermacker, L. J., Senum, G. I., & Jayne, J. (2008). The time evolution of aerosol 
composition over the Mexico City plateau. Atmospheric Chemistry and Physics, 8(6), 1559–1575. https://doi.org/10.5194/acp-8-1559-2008

Landrigan, P., Fuller, R., Acosta, N., Adeyi, O., Arnold, R., Basu, N., & Zhong, M. (2017). The Lancet commission on pollution and health. The 
Lancet, 391. https://doi.org/10.1016/S0140-6736(17)32345-0

Lee-Taylor, J., Madronich, S., Aumont, B., Baker, A., Camredon, M., Hodzic, A., et al. (2011). Explicit modeling of organic chemistry and sec-
ondary organic aerosol partitioning for Mexico City and its outflow plume. Atmospheric Chemistry and Physics, 11(24), 13219–13241. https://
doi.org/10.5194/acp-11-13219-2011

Liang, L., Engling, G., Cheng, Y., Zhang, X., Sun, J., Xu, W., & Ma, Q. (2019). Influence of high relative humidity on secondary organ-
ic carbon: Observations at a background site in East China. Journal of Meteorological Research, 33(5), 905–913. https://doi.org/10.1007/
s13351-019-8202-2

Liu, Q., Jia, X., Quan, J., Li, J., Li, X., Wu, Y., & Liu, Y. (2018). New positive feedback mechanism between boundary layer meteorology and 
secondary aerosol formation during severe haze events. Scientific Reports, 8(1), 6095. https://doi.org/10.1038/s41598-018-24366-3

Liu, S., Tsona, N. T., Zhang, Q., Jia, L., Xu, Y., & Du, L. (2019). Influence of relative humidity on cyclohexene SOA formation from OH pho-
tooxidation. Chemosphere, 231, 478–486. https://doi.org/10.1016/j.chemosphere.2019.05.131

Lou, S., Shrivastava, M., Easter, R., Yang, Y., Ma, P.-L., Wang, H., & Schulz, C. (2020). New SOA treatments within the energy exascale Earth 
system model (E3SM): Strong production and sinks govern atmospheric SOA distributions and radiative forcing. Journal of Advances in 
Modeling Earth Systems, 12. https://doi.org/10.1029/2020MS002266

Luo, G., Yu, F., & Moch, J. M. (2020). Further improvement of wet process treatments in GEOS-Chem v12.6.0: Impact on global distributions of 
aerosols and aerosol precursors. Geoscientific Model Development, 13(6), 2879–2903. https://doi.org/10.5194/gmd-13-2879-2020

Marais, E. A., Jacob, D. J., Jimenez, J. L., Campuzano-Jost, P., Day, D. A., Hu, W., et al. (2016). Aqueous-phase mechanism for secondary organic 
aerosol formation from isoprene: Application to the southeast United States and co-benefit of SO2 emission controls. Atmospheric Chemistry 
and Physics, 16(3), 1603–1618. https://doi.org/10.5194/acp-16-1603-2016

Mukherjee, A., & Agrawal, M. (2017). World air particulate matter: Sources, distribution and health effects. Environmental Chemistry Letters, 
15(2), 283–309. https://doi.org/10.1007/s10311-017-0611-9

Müller, M., Mikoviny, T., Feil, S., Haidacher, S., Hanel, G., Hartungen, E., & Wisthaler, A. (2014). A compact PTR-ToF-MS instrument for 
airborne measurements of volatile organic compounds at high spatiotemporal resolution. Atmospheric Measurement Techniques, 7(11), 3763–
3772. https://doi.org/10.5194/amt-7-3763-2014

Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J., Huang, J., Koch, D., et al. (2013). Anthropogenic and natural radiative forcing. 
In T. F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, et al. (Eds.), Climate change 2013: The physical science basis 
(pp. 659–740).

Nault, B. A., Campuzano-Jost, P., Day, D. A., Schroder, J. C., Anderson, B., Beyersdorf, A. J., et al. (2018). Secondary organic aerosol production 
from local emissions dominates the organic aerosol budget over Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 
18(24), 17769–17800. https://doi.org/10.5194/acp-18-17769-2018

Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., & Seinfeld, J. H. (2007). Secondary organic aerosol formation from 
m-xylene, toluene, and benzene. Atmospheric Chemistry and Physics, 7(14), 3909–3922. https://doi.org/10.5194/acp-7-3909-2007

NIER. (2020). 2017 national air pollutants emission. Retrieved from https://Airemiss.Nier.Go.Kr/
NIER, & NASA. (2017). KORUS-AQ rapid science synthesis report. Retrieved from https://espo.nasa.gov/Sites/Default/Files/Documents/KO-

RUS-AQ%20RSSR.Pdf
Oak, Y. J., Park, R. J., Schroeder, J. R., Crawford, J. H., Blake, D. R., Weinheimer, A. J., et al. (2019). Evaluation of simulated O3 production 

efficiency during the KORUS-AQ campaign: Implications for anthropogenic NOx emissions in Korea. Elementa: Science of the Anthropocene, 
7. https://doi.org/10.1525/elementa.394

Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., & Seinfeld, J. H. (1996). Gas/particle partitioning and secondary organic 
aerosol yields. Environmental Science & Technology, 30(8), 2580–2585. https://doi.org/10.1021/es950943

https://doi.org/10.5194/acp-17-12941-2017
https://doi.org/10.5194/acp-17-12941-2017
https://doi.org/10.1007/s13143-019-00115-y
https://doi.org/10.1073/pnas.1323740111
https://doi.org/10.1126/science.1180353
https://doi.org/10.1016/j.atmosenv.2013.08.055
https://doi.org/10.1525/elementa.424
https://doi.org/10.1525/elementa.424
https://doi.org/10.5572/ajae.2020.14.3.307
https://doi.org/10.5194/acp-17-2009-2017
https://doi.org/10.5194/acp-18-7149-2018
https://doi.org/10.5194/acp-15-10411-2015
https://doi.org/10.5194/acp-8-1559-2008
https://doi.org/10.1016/S0140-6736(17)32345-0
https://doi.org/10.5194/acpd-11-17013-2011
https://doi.org/10.5194/acpd-11-17013-2011
https://doi.org/10.1007/s13351-019-8202-2
https://doi.org/10.1007/s13351-019-8202-2
https://doi.org/10.1038/s41598-018-24366-3
https://doi.org/10.1016/j.chemosphere.2019.05.131
https://doi.org/10.1029/2020MS002266
https://doi.org/10.5194/gmd-13-2879-2020
https://doi.org/10.5194/acp-16-1603-2016
https://doi.org/10.1007/s10311-017-0611-9
https://doi.org/10.5194/amt-7-3763-2014
https://doi.org/10.5194/acp-18-17769-2018
https://doi.org/10.5194/acp-7-3909-2007
https://Airemiss.Nier.Go.Kr/
https://espo.nasa.gov/Sites/Default/Files/Documents/KORUS-AQ%20RSSR.Pdf
https://espo.nasa.gov/Sites/Default/Files/Documents/KORUS-AQ%20RSSR.Pdf
https://doi.org/10.1525/elementa.394
https://doi.org/10.1021/es950943


Journal of Advances in Modeling Earth Systems

OAK ET AL.

10.1029/2021MS002760

18 of 19

Pai, S. J., Heald, C. L., Pierce, J. R., Farina, S. C., Marais, E. A., Jimenez, J. L., & Vu, K. (2020). An evaluation of global organic aerosol schemes 
using airborne observations. Atmospheric Chemistry and Physics, 20(5), 2637–2665. https://doi.org/10.5194/acp-20-2637-2020

Park, J. S., Song, I. H., Park, S.-M., Shin, H., & Hong, Y. (2015). The characteristics and seasonal variations of OC and EC for PM2.5 in Seoul 
Metropolitan area in 2014. Journal of Environmental Impact Assessment, 24(6), 578–592. https://doi.org/10.14249/eia.2015.24.6.578

Park, J.-M., Han, Y.-J., Cho, S.-H., & Kim, H.-W. (2018). Characteristics of carbonaceous PM2.5 in a small residential city in Korea. Atmosphere, 
9(12), 490. https://doi.org/10.3390/atmos9120490

Park, R. J., Jacob, D. J., Chin, M., & Martin, R. V. (2003). Sources of carbonaceous aerosols over the United States and implications for natural 
visibility. Journal of Geophysical Research: Atmospheres, 108(D12), 4355. https://doi.org/10.1029/2002jd003190

Park, R. J., Oak, Y. J., Emmons, L. K., Kim, C.-H., Pfister, G. G., Carmichael, G. R., et al. (2021). Multi-model intercomparisons of air quality 
simulations for the KORUS-AQ campaign. Elementa: Science of the Anthropocene, 9(1). https://doi.org/10.1525/elementa.2021.00139

Parrish, D. D., Stohl, A., Forster, C., Atlas, E. L., Blake, D. R., Goldan, P. D., et al. (2007). Effects of mixing on evolution of hydrocarbon ratios 
in the troposphere. Journal of Geophysical Research: Atmospheres, 112(D10), D10S34. https://doi.org/10.1029/2006JD007583

Peterson, D. A., Hyer, E. J., Han, S.-O., Crawford, J. H., Park, R. J., Holz, R., et al. (2019). Meteorology influencing springtime air quality, pol-
lution transport, and visibility in Korea. Elementa: Science of the Anthropocene, 7. https://doi.org/10.1525/elementa.395

Philip, S., Martin, R. V., Pierce, J. R., Jimenez, J. L., Zhang, Q., Canagaratna, M. R., et al. (2014). Spatially and seasonally resolved estimate of 
the ratio of organic mass to organic carbon. Atmospheric Environment, 87, 34–40. https://doi.org/10.1016/j.atmosenv.2013.11.065

Pye, H. O. T., & Seinfeld, J. H. (2010). A global perspective on aerosol from low-volatility organic compounds. Atmospheric Chemistry and 
Physics, 10(9), 4377–4401. https://doi.org/10.5194/acp-10-4377-2010

Rex, D. F. (1950). Blocking action in the Middle troposphere and its effect upon regional climate. Tellus, 2(3), 196–211. https://doi.
org/10.1111/j.2153-3490.1950.tb00331.x

Ridley, B. A., & Grahek, F. E. (1990). A small, low flow, high sensitivity reaction vessel for NO chemiluminescence detectors. Journal of Atmos-
pheric and Oceanic Technology, 7(2), 307–311. https://doi.org/10.1175/1520-0426(1990)007<0307:ASLFHS>2.0.CO;2

Robinson, A. L., Donahue, N. M., Shrivastava, M. K., Weitkamp, E. A., Sage, A. M., Grieshop, A. P., et al. (2007). Rethinking organic aerosols: 
Semivolatile emissions and photochemical aging. Science, 315(5816), 1259–1262. https://doi.org/10.1126/science.1133061

Sachse, G. W., Collins, J. E., Jr, Hill, G. F., Wade, L. O., Burney, L. G., & Ritter, J. A. (1991). Airborne tunable diode laser sensor for high-pre-
cision concentration and flux measurements of carbon monoxide and methane. Proceedings of SPIE, 1433. https://doi.org/10.1117/12.46162

Schroder, J. C., Campuzano-Jost, P., Day, D. A., Shah, V., Larson, K., Sommers, J. M., et al. (2018). Sources and secondary production of organic 
aerosols in the northeastern United States during WINTER. Journal of Geophysical Research: Atmospheres, 123(14), 7771–7796. https://doi.
org/10.1029/2018jd028475

Shilling, J. E., Chen, Q., King, S. M., Rosenoern, T., Kroll, J. H., Worsnop, D. R., et al. (2009). Loading-dependent elemental composition of 
α-pinene SOA particles. Atmospheric Chemistry and Physics, 9(3), 771–782. https://doi.org/10.5194/acp-9-771-2009

Shrivastava, M., Cappa, C. D., Fan, J., Goldstein, A. H., Guenther, A. B., Jimenez, J. L., & Zhang, Q. (2017). Recent advances in under-
standing secondary organic aerosol: Implications for global climate forcing. Reviews of Geophysics, 55(2), 509–559. https://doi.
org/10.1002/2016RG000540

Shrivastava, M. K., Lane, T. E., Donahue, N. M., Pandis, S. N., & Robinson, A. L. (2008). Effects of gas particle partitioning and aging 
of primary emissions on urban and regional organic aerosol concentrations. Journal of Geophysical Research, 113(D18). https://doi.
org/10.1029/2007jd009735

Stanier, C. O., Donahue, N., & Pandis, S. N. (2008). Parameterization of secondary organic aerosol mass fractions from smog chamber data. 
Atmospheric Environment, 42(10), 2276–2299. https://doi.org/10.1016/j.atmosenv.2007.12.042

Tsigaridis, K., Daskalakis, N., Kanakidou, M., Adams, P. J., Artaxo, P., Bahadur, R., et al. (2014). The AeroCom evaluation and intercomparison 
of organic aerosol in global models. Atmospheric Chemistry and Physics, 14(19), 10845–10895. https://doi.org/10.5194/acp-14-10845-2014

Turpin, B. J., & Huntzicker, J. J. (1995). Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic 
aerosol concentrations during SCAQS. Atmospheric Environment, 29(23), 3527–3544. https://doi.org/10.1016/1352-2310(94)00276-Q

Ulbrich, I. M., Canagaratna, M. R., Zhang, Q., Worsnop, D. R., & Jimenez, J. L. (2009). Interpretation of organic components from Posi-
tive Matrix Factorization of aerosol mass spectrometric data. Atmospheric Chemistry and Physics, 9(9), 2891–2918. https://doi.org/10.5194/
acp-9-2891-2009

van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Mu, M., Kasibhatla, P. S., et al. (2010). Global fire emissions and the contribution 
of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmospheric Chemistry and Physics, 10(23), 11707–11735. https://
doi.org/10.5194/acp-10-11707-2010

Wang, Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P., Moteki, N., et al. (2014). Global budget and radiative forcing of black car-
bon aerosol: Constraints from pole-to-pole (HIPPO) observations across the Pacific. Journal of Geophysical Research: Atmospheres, 119(1), 
195–206. https://doi.org/10.1002/2013JD020824

Weinheimer, A. J., Walega, J. G., Ridley, B. A., Gary, B. L., Blake, D. R., Blake, N. J., et al. (1994). Meridional distributions of NOx, NOy, and 
other species in the lower stratosphere and upper troposphere during AASE II. Geophysical Research Letters, 21(23), 2583–2586. https://doi.
org/10.1029/94gl01897

Woo, J.-H., Choi, K.-C., Kim, H. K., Baek, B. H., Jang, M., Eum, J.-H., et al. (2012). Development of an anthropogenic emissions processing 
system for Asia using SMOKE. Atmospheric Environment, 58, 5–13. https://doi.org/10.1016/j.atmosenv.2011.10.042

Woody, M. C., Baker, K. R., Hayes, P. L., Jimenez, J. L., Koo, B., & Pye, H. O. T. (2016). Understanding sources of organic aerosol during Cal-
Nex-2010 using the CMAQ-VBS. Atmospheric Chemistry and Physics, 16(6), 4081–4100. https://doi.org/10.5194/acp-16-4081-2016

Xing, L., Fu, T. M., Cao, J. J., Lee, S. C., Wang, G. H., Ho, K. F., et al. (2013). Seasonal and spatial variability of the OM/OC mass ratios and high 
regional correlation between oxalic acid and zinc in Chinese urban organic aerosols. Atmospheric Chemistry and Physics, 13(8), 4307–4318. 
https://doi.org/10.5194/acp-13-4307-2013

Zhang, J., Huff Hartz, K. E., Pandis, S. N., & Donahue, N. M. (2006). Secondary organic aerosol formation from Limonene Ozonolysis: Ho-
mogeneous and heterogeneous influences as a function of NOx. The Journal of Physical Chemistry A, 110(38), 11053–11063. https://doi.
org/10.1021/jp062836f

Zhang, Q., Jimenez, J. L., Canagaratna, M. R., Allan, J. D., Coe, H., Ulbrich, I., et al. (2007). Ubiquity and dominance of oxygenated species in 
organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophysical Research Letters, 34(13), L13801. https://
doi.org/10.1029/2007gl029979

Zhang, Q., Xu, Y., & Jia, L. (2019). Secondary organic aerosol formation from OH-initiated oxidation of m-xylene: Effects of relative humidity 
on yield and chemical composition. Atmospheric Chemistry and Physics, 19(23), 15007–15021. https://doi.org/10.5194/acp-19-15007-2019

https://doi.org/10.5194/acp-20-2637-2020
https://doi.org/10.14249/eia.2015.24.6.578
https://doi.org/10.3390/atmos9120490
https://doi.org/10.1029/2002jd003190
https://doi.org/10.1525/elementa.2021.00139
https://doi.org/10.1029/2006JD007583
https://doi.org/10.1525/elementa.395
https://doi.org/10.1016/j.atmosenv.2013.11.065
https://doi.org/10.5194/acp-10-4377-2010
https://doi.org/10.1111/j.2153-3490.1950.tb00331.x
https://doi.org/10.1111/j.2153-3490.1950.tb00331.x
https://doi.org/10.1175/1520-0426(1990)007%3C0307:ASLFHS%3E2.0.CO;2
https://doi.org/10.1126/science.1133061
https://doi.org/10.1117/12.46162
https://doi.org/10.1029/2018jd028475
https://doi.org/10.1029/2018jd028475
https://doi.org/10.5194/acp-9-771-2009
https://doi.org/10.1002/2016RG000540
https://doi.org/10.1002/2016RG000540
https://doi.org/10.1029/2007JD009735
https://doi.org/10.1029/2007JD009735
https://doi.org/10.1016/j.atmosenv.2007.12.042
https://doi.org/10.5194/acp-14-10845-2014
https://doi.org/10.1016/1352-2310(94)00276-Q
https://doi.org/10.5194/acp-9-2891-2009
https://doi.org/10.5194/acp-9-2891-2009
https://doi.org/10.5194/acp-10-11707-2010
https://doi.org/10.5194/acp-10-11707-2010
https://doi.org/10.1002/2013JD020824
https://doi.org/10.1029/94GL01897
https://doi.org/10.1029/94GL01897
https://doi.org/10.1016/j.atmosenv.2011.10.042
https://doi.org/10.5194/acp-16-4081-2016
https://doi.org/10.5194/acp-13-4307-2013
https://doi.org/10.1021/jp062836f
https://doi.org/10.1021/jp062836f
https://doi.org/10.1029/2007gl029979
https://doi.org/10.1029/2007gl029979
https://doi.org/10.5194/acp-19-15007-2019


Journal of Advances in Modeling Earth Systems

OAK ET AL.

10.1029/2021MS002760

19 of 19

Zhang, X., Cappa, C. D., Jathar, S. H., McVay, R. C., Ensberg, J. J., Kleeman, M. J., & Seinfeld, J. H. (2014). Influence of vapor wall loss in 
laboratory chambers on yields of secondary organic aerosol. Proceedings of the National Academy of Sciences, 111(16), 5802–5807. https://
doi.org/10.1073/pnas.1404727111

Zhou, W., Xu, W., Kim, H., Zhang, Q., Fu, P., Worsnop, D. R., & Sun, Y. (2020). A review of aerosol chemistry in Asia: Insights from aerosol 
mass spectrometer measurements. Environmental Science: Processes & Impacts, 22(8), 1616–1653. https://doi.org/10.1039/d0em00212g

References From the Supporting Information
Castro, L. M., Pio, C. A., Harrison, R. M., & Smith, D. J. T. (1999). Carbonaceous aerosol in urban and rural European atmospheres: Estimation 

of secondary organic carbon concentrations. Atmospheric Environment, 33(17), 2771–2781. https://doi.org/10.1016/s1352-2310(98)00331-8
Huang, C., Wang, H. L., Li, L., Wang, Q., Lu, Q., de Gouw, J. A., et al. (2015). VOC species and emission inventory from vehicles and their 

SOA formation potentials estimation in Shanghai, China. Atmospheric Chemistry and Physics, 15(19), 11081–11096. https://doi.org/10.5194/
acp-15-11081-2015

Jeon, H., Park, J., Kim, H., Sung, M., Choi, J., Hong, Y., & Hong, J. (2015). The characteristics of PM2.5 concentration and chemical composition 
of Seoul Metropolitan and inflow background area in Korea peninsula. Journal of the Korean Society of Urban Environment, 15(3), 261–271. 
Retrieved from https://www.earticle.net/Article/A267061

Lim, H.-J., & Turpin, B. J. (2002). Origins of primary and secondary organic aerosol in Atlanta: Results of time-resolved measurements during 
the Atlanta supersite experiment. Environmental Science & Technology, 36(21), 4489–4496. https://doi.org/10.1021/es0206487

Millet, D. B., Donahue, N. M., Pandis, S. N., Polidori, A., Stanier, C. O., Turpin, B. J., & Goldstein, A. H. (2005). Atmospheric volatile organic 
compound measurements during the Pittsburgh Air Quality Study: Results, interpretation, and quantification of primary and secondary contri-
butions. Journal of Geophysical Research: Atmospheres, 110(D7), D07S07. https://doi.org/10.1029/2004JD004601

Pio, C., Cerqueira, M., Harrison, R., Nunes, T., Mirante, F., Alves, C., & Matos, M. (2011). OC/EC ratio observations in europe: Re-think-
ing the approach for apportionment between primary and secondary organic carbon. Atmospheric Environment, 45, 6121–6132. https://doi.
org/10.1016/j.atmosenv.2011.08.045

Wu, C., & Yu, J. Z. (2016). Determination of primary combustion source organic carbon-to-elemental carbon (OC/EC) ratio using ambient OC 
and EC measurements: Secondary OC-EC correlation minimization method. Atmospheric Chemistry and Physics, 16(8), 5453–5465. https://
doi.org/10.5194/acp-16-5453-2016

Wu, C., & Yu, J. Z. (2018). Evaluation of linear regression techniques for atmospheric applications: The importance of appropriate weighting. 
Atmospheric Measurement Techniques, 11(2), 1233–1250. https://doi.org/10.5194/amt-11-1233-2018

Yuan, B., Hu, W. W., Shao, M., Wang, M., Chen, W. T., Lu, S. H., et al. (2013). VOC emissions, evolutions and contributions to SOA formation 
at a receptor site in eastern China. Atmospheric Chemistry and Physics, 13(17), 8815–8832. https://doi.org/10.5194/acp-13-8815-2013

https://doi.org/10.1073/pnas.1404727111
https://doi.org/10.1073/pnas.1404727111
https://doi.org/10.1039/d0em00212g
https://doi.org/10.1016/s1352-2310(98)00331-8
https://doi.org/10.5194/acp-15-11081-2015
https://doi.org/10.5194/acp-15-11081-2015
https://www.earticle.net/Article/A267061
https://doi.org/10.1021/es0206487
https://doi.org/10.1029/2004JD004601
https://doi.org/10.1016/j.atmosenv.2011.08.045
https://doi.org/10.1016/j.atmosenv.2011.08.045
https://doi.org/10.5194/acp-16-5453-2016
https://doi.org/10.5194/acp-16-5453-2016
https://doi.org/10.5194/amt-11-1233-2018
https://doi.org/10.5194/acp-13-8815-2013

	Evaluation of Secondary Organic Aerosol (SOA) Simulations for Seoul, Korea
	Abstract
	Plain Language Summary
	1. Introduction
	2. Model Description
	3. Observations
	3.1. KORUS-AQ
	3.2. Surface Observations

	4. Model Evaluation During KORUS-AQ
	4.1. Total OA and SOA Precursors
	4.1.1. Dynamic Weather Period (1−16 May)
	4.1.2. High Organic Period (17−24 May)
	4.1.3. High Inorganic Period (25−31 May)
	4.1.4. Blocking Pattern Period (1−7 June)

	4.2. Photochemical Evolution of SOA
	4.3. Impact of Chemical Aging on Simulated SOA

	5. Seasonal Characteristics of OA in Surface Air
	5.1. Spring-Summer Season
	5.2. Fall-Winter Season

	6. Summary and Conclusions
	Data Availability Statement
	References
	References From the Supporting Information


